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SUMMARY 

This paper presents a survey of several finite difference schemes for the steady-state convection- 
diffusion equation in one and two dimensions. Most difference schemes have O(h2) truncation error. 
The behaviour of these schemes on a one-dimensional model problem is analysed in detail, especially 
for the case when convection dominates diffusion. It is concluded that none of these schemes is 
universally second order. One recently proposed scheme is found to yield highly inaccurate solutions 
for the case of practical interest, i.e. when convection dominates diffusion. Extensions to two and three 
dimensions are also discussed. 
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1. INTRODUCTION 

In this paper we consider the steady-state convection-diffusion equation 

LU U ,  + ZA,,~ + A 1  U, + AZuy = f ( x ,  y) ( 1) 

where Al ,  Az are constants that may take large values. Equation (1) holds in a bounded 
domain D with boundary r. The values of u(x, y )  on the boundary of D are assumed 
known. 

The above differential equation is a linearized version of the differential equations that 
describe the steady transport of momentum, energy, vorticity, etc. The problems of physical 
interest and practical importance include those where the convection (advection) dominates 
diffusion. These problems correspond to equation (1) with large values of A l ,  hz. 

The above differential equation has been studied by a large number of investigators and 
many finite difference schemes have been proposed in the literature. The main object of 
these investigations has been to find a difference scheme that has a high order of truncation 
error and yields accurate solutions when A, are large. 

In this paper we examine six difference schemes, five of which have truncation errors of 
order h', in the limiting case when A, are fixed and the mesh width h is reduced. These 
schemes include one going as far back as Allen and Southwell' and a recent one proposed by 
Dennis et aL4 The central difference scheme and the upwind scheme of first order are also 
included. We examine the behaviour of these schemes for the case of practical importance: h 
fixed and A, moderately large. In the case of the one-dimensional convection diffusion 
equation we establish, both analytically and numerically, that all of these second-order 
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schemes exhibit O(h)  behaviour at best and yield grossly inaccurate solutions at worst. In the 
case of the two-dimensional problem of equation (1) we establish corresponding results 
numerically. 

In the next two sections we introduce the finite difference schemes and exhibit their 
truncation errors. In Sections 4 and 5 we closely examine a model problem and analyse the 
behaviour of each of the difference schemes for two cases: (i) when h -+ 0 and (ii) when h is 
fixed and convection dominates diffusion. In Section 6 we present numerical results to 
support the analysis of Section 5. In Section 7 we present some numerical results for 
equation (1) and show that the behaviour of these schemes is carried over from one to two 
dimensions. 

It is concluded that none of the schemes considered here for the one-dimensional problem 
is universally second order. When convection dominates diffusion, one observes either the 
O(h)  behaviour of the upwind scheme or the oscillatory behaviour of the central scheme or 
the smooth but grossly inaccurate behaviour of the Dennis scheme. It is possible to devise 
high-order schemes that work well for the convection dominated flows, see e.g. Reference 14. 
However, such schemes may not exhibit high orders of accuracy for the whole range of A,. 

In higher dimensions it is possible to construct schemes that yield stable and accurate 
solutions for the whole range of A,. Details of numerical experiments with one such scheme 
are presented in this paper. 

2. FINITE D I E R E N C E  SCHEMES 

In this section we consider the one-dimensional analogue of equation (1): 

Lu = u,, + A h  = f ( x ) ,  a s x  5 b ;  
u ( a )  =a, u(b)  = p. 

Equation (2) is also referred to as the linearized Burger's equation. 
We cover the interval [a, b]  by a uniform mesh: {x,: x, = a + ih, h = ( b  - a) /N}  and use the 

notation u, = u(x,). The boundary conditions reduce to uo = a, u, = p. At each interior point 
x,, 1 ~ i s N - 1 ,  we define a finite difference approximation to the operator Lu. The 
following approximations are frequently used in the literature: 

1. Upwind Difference Scheme 

L;y =h-2(y+l-2u,+u,-1)+hh-~(Y+1-Y), A > O  
= h-2(y+l -224, + u,-*)+Ah-l(u, - u,-,), A <o. 

2. Central Difference Scheme 

Liu, = h-2(u,+1-2u, +y--l)+A(2h)-'(y+l-yY-1). 

3. Il'in Scheme 

4. Samarskii Scheme 

L;ui = (1 + Ah/2)-'h-2(ui+* -24  + U i - J  + Ah-'(4+1- 2.41, 

= ( 1 - Ah/2)-1 h -Z( U i + l  - 2% + ui -1) + Ah-y - 4 -11, 

A > 0 
A < 0. 



SECOND-ORDER DIFFERENCE SCHEMES 

5. Dennis Scheme 

321 

A2h2 
Lz& = (l+--g--)h-2(y+1-2ui +ui-l)+A(2h)-1(u,+l-ui-l). 

The first two schemes defined by Li  and Lt have been widely used in the literature. The Il’in 
scheme L: has been studied by Kellogg et ~ 1 . ~ ~ ~ ~ ’  Gresho and Lee5 refer to this scheme as 
the ‘smart’ upwind scheme as it produces the exact solution of equation (2) with f = 0. With 
f #  0, Lz has a discretization error of order h2/(h + A-’).’* The history of this scheme goes 
back to Allen and Southwell,2 Il’in,’ R O S C O ~ ’ ~  and others. Dennis3 has an exponential 
scheme which is very similar to the Il’in scheme. The Samarskii scheme L: has been 
considered by a few The Dennis scheme Lz is the one-dimensional analogue of 
the scheme proposed by Dennis et uL4 for solving a three-dimensional cavity flow problem. 
This scheme can be obtained from the Il’in scheme L: or from the Dennis exponential 
scheme3 by retaining the first three terms (up to order 02) in the expansion of ee and e-@. 

The upwind scheme LL uses second-order discretization of the diffusion term and 
first-order one-sided discretization of the convection term. In the central scheme Lt each 
term is replaced by second-order central differences. The 11% scheme Lz and the Dennis 
scheme Lz use a central difference approximation of the convection term; in addition, the 
diffusion term is multiplied by terms which are of order 1 in the limiting case of Ah 4 0. The 
Samarskii scheme L: uses one-sided differences for the approximation of the convection 
term. The multiplication factor of the diffusion term yields an effective central difference 
approximation of the convection term when Ah -+ 0. 

We also consider a modification of the Samarskii scheme L: that is obtained by retaining 
the first three terms in the expansion of (1&6)-’: 

)h-2(y, ,-2ui+y-,)+Ah-1(~+l-ui) ,  X > O  

Ah A2h2 
2 4  

= ( 1  + - + -) h-2( & + - 2 us + & - 1) + Ah-’( - 4 - J, A < 0. 

3 .  TRUNCATION ERRORS 

The truncation errors of the difference schemes (Lhu - Lu, h -+ O), assuming sufficient 
regularity of u(x), are given by: 

1. Upwind 

2. Central 
3. Il’in 

4. Samarskii 

~ u , ,  + h2/12(un,, +2Au,,,)+ O(h3> 
2 

h2/12(u,,, +2Au,,,)+ O(h4) 
h2/12(u,,,, +2A%, +A2u,,)+O(h4) 

5 .  Dennis h2/12(ux,,, +2Ay,  +~A2u,,)+ O(h4) 
6.  Modified Samarskii h2/12(ux,,, +2huXx, + 3A2uxx) + O(h4) 

In each case we have assumed that the value of A remains fixed and the mesh width h is 
allowed to decrease. Except for the upwind scheme, which has a truncation error of order h, 
all of the other schemes are of order hZ. 
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4. MODEL PROBLEM 

We first examine the effect of the above difference schemes on the model problem: 

u"-Pe. u'=O,  O<x<l; Pe>O 
u(0) = To, u(1) = TI .  

The exact solution of this problem is given by 

(3)  

where Pe is the Peclet number. This problem has been studied by many authors, a recent 
study being Reference 5. The solution u(x) has a smooth variation over the interval (0, 1) 
when Pe is small. When Pe is large, the solution exhibits a boundary layer behaviour where 
u(x)  is almost equal to To except for a thin layer near x = 1 in which the solution u(x) 
rapidly changes from To to TI. This boundary layer has thickness 6=l /Pe and has been 
referred to as the Outflow Boundary Layer in Reference 5. In Figure 1 we present the graph 
of u(x) for several values of Pe. 

The finite difference approximations discussed in the previous sections can be rewritten for 
equation ( 3 )  to yield the following linear difference equations of second order. We use the 
notation 8 =Pe . h/2, xi = ih, and h = l/N. Each of the following equations is defined for 

T 

Exact 
Solution 

To 

- 
X 

Figure 1. Exact solutions of the one-dimensional model problem (A = Peclet number, f(x) = 0) 
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e 
h2L4ui =-r---[e-eu,+l-2 cosh8h+eeu,-J=0 

sin he 
S 

h 2 ~ ; h  = - [ ~i +I - 2( 1 + 8 + 8 ’) ui + ( I + 2 e + 2e2) ui -I] = o s + e  
h2L;u, = (s - e + e2/2)~i+l-(2+ e2)h +(s + 8 + 82/2)~-1] = o 
h 2 ~ ; u i  = (1 - e + e2)htl -(2+2e2)ui +(s + e + e 2 ) U i - ?  = o 

Each of the above difference schemes is of the form: 

K[aui+,-(a+b)u, +bui-J=O, SccisN-1 

The boundary values are uo = To, u, = T,. 
The general solution of equation ( 5 )  is given by 

ui = c1 + c2z1 where z = b/a. 

Using the boundary values, we obtain 

The error at x = x, is given by 

We are interested in the behaviour of e, when 
(i) Pe is fixed and h+O; and more importantly, 

(ii) h is fixed and Pe is increased. 

5. THE MODEL PROBLEM: BEHAVIOUR OF THE APPROXIMATE 
SOLUTIONS OF THE DIFFERENCE SCHEMES 

We first consider the problem of convergence when Pe is fixed and the mesh width h is 
reduced. The error at x = x, is defined by equation (7), where z is ratio of the coefficient of 
y-, to the coefficient of y+,. The results are summarized in Table I. It is clear that the 
upwind scheme converges with O(h)  error, the Il’in scheme yields the exact solution and the 
remaining four schemes converge with O(h2) error. 

In many practical computations, however, the Peclet number Pe is quite large and the 
mesh width h cannot become infinitesimal. The results for the case when P e + m  with the 
fixed mesh width h are summarized in Table 11. 

It is noted that the upwind and the Samarskii schemes exhibit convergence to the exact 
solution for each mesh point. The maximum error of these schemes occurs at the mesh point 
closest to the outflow boundary, i.e. at x At this point, the maximum error of the 
upwind scheme is (T, - T,)/(Pe. h )  whereas the maximum error of the Samarskii scheme is 
2(T1 - To)/(Pe . h)2. Thus the errors of the Samarskii scheme are smaller than those of the 
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Table 1. Error behaviour of La. Case 1: Pe fixed, h-0;  
O=Pe. h/2 

Scheme Value of z lim z' lim ei 
h - 0 h - 0  

Upwind 1+20 eP'.",+O(Pe2. h) O(h) 

ePe.xr+O(Pe'. h2) O(h2) Central 

Zero Il'in e2' 
Samarskii 1+26+202 epe"~+O(Pe" h2) O(hz)  

1 + 0  
1 - 0  
- 

ePe. x, 

Dennis O(h2) 2 + 2 e + e 2  eP".X,+O(pe3. h2) 
2-20+02 

1 + 0 + 0 2  epe'xc+O(Pe3. h2) O(h2) 
1 - 0 + 0' 

Modified 
Samarskii 

upwind scheme. The central difference scheme exhibits the familiar oscillatory property, the 
oscillations becoming unbounded when N is even. The Il'in scheme, by design, is exact at 
each point. The surprising result is that the Dennis scheme and the modified Samarskii 
scheme provide solutions which do not converge to the exact solution anywhere in the 
interval (0,l). The approximate solution in both cases converges to T,+(T, - To) .xi, 
1 s  i 5 N -  1 whereas the exact solution u(x i )  4 To as Pe -+ CQ (see Figure 1). It is clear that 
these two difference schemes would be unsuitable for any practical computation (when Pe is 
even moderately large), even though both of these schemes have O(h2) truncation errors. 
Our numerical results, discussed in the next section, confirm these observations. 

Gresho and Lees have considered the values of diffusive flux at the outflow boundary for 

Table 11. Error behaviour of I,;. Case 2: h fixed, Pe -+ m; 0 = Pe . h/2 

Scheme Value of z lim z' 
Pe-- 

lim ei 
P e e -  

Upwind 1+20 (20)i (20)i-N 0 , l S i s N - 1  
max error = eN-, 

Central - 1 + 6  (-1y(I+2i/0) 
1-8 

e2' e2Ri Il'in 
Samarskii 1+20+202 (202)' 

2+20 + o2 
2-20 + o2 Dennis 1 + 410 

1 + o + 0 2  
1 + 2i/O 

Modified 
Samarskii 1 - 0 + 0' 

I -(i + O)/N, i odd 
ilN, i even 
(i + O)/(N+ O), i odd 
-i/(N+O), i even 
(1 - e2")/( 1 - eZRN) 
(202)'-N 

I 

il N 

il N 

0, I l i s N - l  
0 , l l i s N - 1  
max error = eN-1 
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the case when Pe >> 1. The diffusive flux at x = 1 is given by 

epe 
q = -du/dxl,=l = (TI-- T o ) .  Pe . - 

1 -epe 

-+ -(Tl - To) . Pe, Pe -+ m. (8) 
We have used the exact solution in equation (4) to obtain the above value of q. Gresho and 
Lee calculated the value of q in the case of the finite difference schemes through the 
difference: 

q ( u N - 1 -  U N ) / h .  (9) 
Using the exact solution (6) of the difference schemes, we obtain 

In Table 111, we summarize the limiting behaviour of q for the difference schemes I,;, i = 
1, ..., 6. 

It is noted that the limiting values of q for Pe >> 1 do not approach the limiting values of q 
given in equation (8) for any of the difference approximations. The closest values obtained 
are -(T, - To) . N in the case of the upwind, Il'in and the Samarskii schemes. In the case of 
the central scheme, the limiting values of q is -(Tl - To) . N for N odd and +m for N even. 
The Dennis scheme and the modified Samarskii scheme yield -(Tl-To) as the limiting 
values. 

Gresho and Lee' have given some emphasis to the flux calculations (9) and (SO) obtained 
from the approximate solutions of various difference schemes. If one computes the value of 
q = ( ~ ~ - ~ - - U ~ ) / h  from the exact solution (4) of the differential equation (3) one obtains 

-+ -(Tl-To).N7 Pe-+m. (11) 

This shows that even the exact solution of the differential equation does not produce the 
correct value of diffusive flux when computed through equation (9) for Pe>> 1. It is thus 
unreasonable to expect any difference method to yield flux values that converge to 

Table 111. Behaviour of diffusive flux q. h fixed, Pe -+ w, 6 = Pe . h/2 

Scheme Value of z lim 4 
Ye-- 

-~~ 

Upwind 1 +26 
2(-1IN-' 
1 -(-ON . ( T , - T o ) . N .  

Il'in e'* -(Ti-TJ.  N 

Samarskii 1 +2e +26' -(Ti - To) . 
Dennis 
Modified 

(2+26 + 8')/(2-28 + 6') -(TI - To) 

Samarskii (1 + 6 + 6*)/(1 - 6 + 6') -(TI - To) 



326 M. M. GUFTA 

-Pe . (TI - To). The three difference schemes Lk, L; and L: yield the best limiting values 
that could reasonably be expected. However, if one were to use a graded mesh in the outflow 
boundary layer near x = 1 such that h < (Pe)-’, then each difference scheme will produce 
correct values of the flux. 

We conclude this section by giving a quick guide to  detecting various properties of a 
difference scheme of the form (5 )  for solving the model problem (3). The solution of the 
difference equation is given by (6): 

( 1 - 2 )  
(1-2”)’ 

= To+ (TI - To) - 1 % i  % N -  1, 

Here z = b/a and a, b are the coefficients of 
consistency, the difference scheme (5 )  must satisfy the condition 

and respectively, in equation (5).  For 

a - b  - = -Pe . h/2+ O(h2); 
a + b  

Pe fixed, h small 

i.e. z = 1 +Pe . h + O(h2),  h + 0. 
When h is fixed and Pe -+ m, most consistent difference schemes give the limiting values of 

z as 0 ,1 ,  -1 or fa. The behaviour of the solutions of such difference schemes is summarized 
in Table IV. 

6. NUMERICAL REBULTS 

We computed the numerical solutions of the one-dimensional convection diffusion equation 
(2) for several test functions. In each case, we inserted the test solutions in the differential 
equation to obtain the forcing term f(x). The boundary values u(a) and u(b)  were also 
obtained from the exact solution u(x ) .  We used the six finite difference schemes considered 
in the preceding sections with the value of h ranging from 1 to 100,000 and mesh width h 
ranging from 0.1 to 0-005. First we present the results obtained with the model problem 
(equation (2) with f = 0). The behaviour of the exact solution of the model problem is given 
in Figure 1. In Figure 2 we present the behaviour of the maximum errors of Lt, with 
increasing values of Pe for a typical mesh width h = 0.01. Here maximum error is defined as 

\ui-u(%)l. The results were obtained on an IBM 4341 using double-precision 

arithmetic. The error curves for the Dennis scheme L: and the modified Samarskii scheme 
LE were found to be almost identical? especially for large Peclet numbers and we have only 
presented the error curve for I,:. The errors of the Il’in scheme for the model problem were 
found to be 0(10-15) for all values of Pe . h. This is the rounding error limit for the computer 
used. 

From Figure 2 we observe that three schemes, viz. L; (Central), Lt (Samarskii) and L; 
(Dennis), have comparable error behaviour when Pe is small. Each of these schemes has 

max 
lzsiz%N--I 

Table IV. Behaviour of general difference schemes, h fixed, Pe --+ m 

Value of z Flux q Error e, Solution behaviour 

0 0 Ti-To Incorrect 
1 -(TI -To) (TI - To).  ilN Incorrect 

-N(Tl-To), N odd 
(T1 - To) Oscillatory 

-1 
-m* 

f W  -N(T; - TJ 0 Correct 
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10‘ 

I 00 

lo-’ 

10” 

I o-’ 

I 0-4 

I o-6 

lo-’ - 

Maximum 
Error 

0 L.=1 

I I ,  A c = 2  

I0 100 loo0 loo00 1- 

x 
Figure 2. Maximum errors of the one-dimensional model problem: i = 1 Upwind scheme; i = 2 Central scheme; 

i = 4 Samarskii scheme: i = 5 Dennis scheme 

O(h2) rate of convergence when Pe . h is reduced. When Pe increases, the error behaviour of 
these three schemes is substantially changed. The central scheme exhibits oscillatory solu- 
tions for Pe . h > 2 with rapidly increasing error when Pe is increased. The Dennis scheme as 
well as the modified Samarskii scheme have grossly incorrect, though smooth, solutions for 
large Pe. The only numerical solutions that have any resemblance to the exact solutions for 
large Peclet numbers are obtained with the upwind, Samarskii and Il’in schemes. We also 
observe from Figure 2 that each error curve exhibits a turning point usually for Per2(h)-’. 
With a cruder mesh these turning points are observed for smaller values of Pe. Of course, 
with finer mesh these points could be pushed further. 

The behaviour of the Dennis scheme L; is clearly exhibited in Figure 3 where we present 
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T 

I L 
1 10 

X 

Figure 3. Behaviour of the Dennis scheme for large Peclet numbers (one-dimensional model problem) 

the solution profiles of the model problem for a typical mesh ( h  = 0.025). As Pe increases 
from 1 to 100, the behaviour of the solution curves remains consistent with the exact 
solutions in Figure 1. As Pe increases beyond 100, these solution curves no longer approach 
the exact values; instead these curves reverse the previous trend and begin approaching the 
straight line m(x) = To+ (T,  - T,)x. Such turning points are observed at Pe = 200, h = 0.01 
and Pe= 50, h =0.05. At Pe= lo5, h =0.025 the solution curve of the Dennis scheme Lz 
has come very close to the straight line (Figure 3). 

We also computed the numerical solutions of equation (2) using the six difference schemes 
for several other test problems with f # 0. The difference schemes I,;, i = 2 ,3 ,4 ,5 ,6  exhi- 
bited O(h2) convergence when A was small. The upwind scheme exhibited O(h)  con- 
vergence, as expected. As A was increased, the Il'in (i = 3) and the Samarskii ( i  = 4) schemes 
behaved much like the upwind scheme ( i  = 1) whereas the Dennis ( i  = 5 )  and the modified 
Samarskii (i = 6) schemes yielded grossly inaccurate solutions. The central scheme (i = 2) 
yielded oscillatory solutions, as expected. 

Kellogg and Tsan'" have proved discretization error estimates of order h2 when h < A-' 
for both the Il'in and the Samarskii schemes. For large values of A, both of these schemes 
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suffer a loss in the order of accuracy. This loss in the order of accuracy is typical of all 
three-point approximations (of positive type) of equation (2)." 

In the next section we present some results for the two-dimensional problem of equation 
(1). 

7. TWO-DIMENSIONAL CONVECTION-DIFFUSION EQUATION 

We now consider the two-dimensional convection-diffusion equation (1). The analysis in this 
case is complicated but the results of one dimension are expected to hold in higher 
dimensions. 

We computed the numerical solutions of equation (1) in a unit square 0 5 x, y 5 1 for a 
variety of test problems. The forcing term f(x, y) and the boundary values of u(x, y) were, in 
each case, obtained from the known exact solutions. The values of maximum errors with L; 
(i = 1,2,3,4,5)  for a typical test problem are presented in Table V. Here the exact solution 
is u(x, y)  = 2x(x - l)(cos 27ry - 1) and a uniform mesh width with h = 0.05 is used to cover 
the unit square. The maximum error is defined as I & {  - u(&, yJ. The results in 

Table V are obtained on an IBM4341 using single-precision arithmetic. 
We observe from Table V that the schemes LL (i = 2,3,4,5) yield comparable solutions 

when the values of A l ,  A2 are small. When the values of A, are increased, the 11% and the 
Samarskii schemes start behaving exactly like the upwind scheme. The Dennis scheme (i = 5 )  
begins yielding grossly inaccurate solutions for large values of A,, its error reaches the 100 
per cent level as A, are increased. The central scheme (i = 2) yields oscillatory solutions for 
A, > 100 ( h  = 0.05). 

In the last column of Table V we have also presented the errors obtained with a 
fourth-order difference scheme which has been designed especially for the two-dimensional 
convection-diffusion equation (1). This scheme remains stable for all values of A, and yields 
highly accurate solutions for the whole range of A,. It has been derived as a generalization of 
a nine-point fourth-order discretization of the Poisson equation. For details, see Reference 
6. 

We have also developed a fourth-order difference scheme for equation (1) when the 

max 
lck, 1sN-1 

Table V. Maximum errors for the two-dimensional convection-diffusion equation. Mesh width h = 
0.05. Exact solution u(x, y )  = 2x(x - l)(cos 27ry - 1) 

~ 

Fourth- 

A i  A2 i = l  i = 2  i = 3  i = 4  i = 5  scheme 
Upwind Central Il'in Samarskii Denis order 

1 
10 
10 

100 
100 
500 

1,000 
2,000 
5,000 

100,000 

1 
1 

10 
10 

100 
100 
100 
100 
100 

10,000 

0.0197 
0.0823 
0.1266 
0.1797 
0.1825 
0.2174 
0.2077 
0.1988 
0.1940 
0.2143 

0*4691(-2)" 
0.3733( -2) 
0*1009(-1) 
0-41 94(-2) 
0*1929(- 1) 
0.1174(-1) 
0.6894(-2) 
0.4940(-2) 
0*4015(-2) 
0.1 12 1 (- 1) 

0-4492(-2) 
0*4264(-2) 
0.1132(-1) 
0.1062 
0.1176 
0.1952 
0.1951 
0-1921 
0.1912 
0.2142 

0*4142(- 
0.1305(- 
0*2558(- 
0.1207 
0.1350 
0.2002 
0-1978 
0.1935 
0-1917 
0.2142 

2) 0-4386(-2) 
1) 0.7194(-2) 
1) 0-1621(-1) 

0.1929 
0-2216 
0.6744 
0.8691 
0.9628 
0.9918 
1~0000 

0.3285(-3) 
0.2 1 3 5 (- 3) 
0.1458(-3) 
0.1018(-3) 
0.1679(-2) 
0-8767(-3) 
0*4563(-3) 
0*2724(-3) 
0*7367(-4) 
0-3924(-3) 

* 0.4691(-2)=0.4691 x lo-* 
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coefficients Al,  h2 are functions of x, y. This scheme is suitable for solving the Navier-Stokes 
equations. Details of this scheme are being published e l~ewhere .~  

We note here that the Dennis scheme Lz was developed by Dennis et aL4 for solving 
three-dimensional Navier-Stokes equations. Dennis et al.4 designed their scheme to obtain 
diagonal dominance and to solve the problem of flow of a viscous incompressible fluid in a 
three-dimensional cavity. While we have not carried out any computations in three dimen- 
sions, there is evidence’312 that the Dennis scheme suffers from large artificial diffusion at 
high Reynolds numbers. Agarwall has presented three-dimensional results showing the 
solutions of Dennis et aL4 to be highly inaccurate for moderate to large Reynolds numbers. 

We used the Il’in scheme L: to  solve the two-dimensional problem of a viscous incompressi- 
ble fluid flow in a driven cavity. The results for smaller Reynolds numbers (up to 100, 
h = 0.05) were found to be comparable to the central scheme solutions. For large Reynolds 
numbers, we encountered numerical instabilities and the solutions were no better than the 
upwind scheme solutions. 

8. CONCLUSIONS 

The major conclusion of this paper is that there is no universal ‘second-order’ scheme of the 
type (5) for the one-dimensional problem. When the mesh width h is fixed, and the Peclet 
number is increased one expects to see either (i) the correct though not very accurate 
behaviour of the upwind scheme, or (ii) the oscillatory and possibly inaccurate behaviour of 
the central scheme, or (iii) the smooth though grossly inaccurate behaviour of the Dennis 
scheme. It seems that for the one-dimensional convection-diffusion equation there is no 
other limiting behaviour in general. 

We have clearly illustrated the pitfalls of deriving finite difference schemes with assump- 
tions such as ee=1+8+tl2 and ( 1 + 8 ) - ’ ~ 1 - 8 + 8 2 .  We have shown that the difference 
schemes thus obtained are satisfactory only when the above assumptions are valid, i.e. when 
8 is small. When one uses such difference schemes for large values of 6, one obtains highly 
inaccurate solutions as has been conclusively demonstrated in case of the Dennis scheme and 
the modified Samarskii scheme. 

We have also presented evidence to demonstrate that the behaviour of the one- 
dimensional difference schemes carries over to the higher dimensions. It is, however, possible 
to derive new difference schemes in higher dimensions which are highly accurate, stable as 
well as cost effective. Such schemes may not have lower-dimensional counterparts though. 
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